PolySpace® Products for C 7
Getting Started Guide

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

PolySpace® Products for C Getting Started Guide
© COPYRIGHT 1997-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www .mathworks.com/patents for more information.

Revision History

March 2008 First printing Revised for Version 5.1 (Release 2008a)
October 2008 Second printing Revised for Version 6.0 (Release 2008b)
March 2009 Third printing Revised for Version 7.0 (Release 2009a)
September 2009 Online only Revised for Version 7.1 (Release 2009b)

March 2010 Online only Revised for Version 7.2 (Release 2010a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction to PolySpace Products for
Verifying C Code

1

Product Overviewttt 1-2
Ensures Software Reliability 1-2
Decreases Development Time 1-2
Improves the Development Process 1-3

Product Components 1-5

Installing PolySpace Products 1-6
Finding the Installation Instructions 1-6
Obtaining Licenses for PolySpace® Client for C/C++ and

PolySpace® Server for C/C++ 1-6

Working with PolySpace Software 1-7
Basic Workflow i 1-7
The Workflow in This Guide 1-8
Working with PolySpace Project Model Files 1-9

Learning More00t iinnnnn. 1-10
ProductHelp i, 1-10
The MathWorks Online o viuu.. 1-10

Related Products 1-11
PolySpace Products for Verifying C++ Code 1-11
PolySpace Products for Verifying Ada Code 1-11
PolySpace Products for Linking to Models 1-11

iii

iv

Contents

Setting Up a Project File

2

About This Tutorial
OVEIVIEW ot ittt et e et et e e e
Example Files i

Creating a New Project
What Is a Project?
Preparing the Project Folders
Opening the PolySpace Launcher
Changing the Default Folder
Creating a New Project to Verify the Example C File

2-2
2-2
2-2

2-3
2-3
2-4
2-5
2-7
2-9

Running a Verification

3

About This Tutorial
OVEIVIEW o i ittt et et e e e e
Before You Startcoiiiiii

Opening the Project

Using the Launcher to Start a Verification That Runs
ON A SEIVET ..ttt ettt ettt ettt
Starting the Verification u...
Monitoring the Progress of the Verification
Downloading Results from the Server to the Client
Troubleshooting a Failed Verification

Using PolySpace In One Click to Start a Verification
That Runsona Serverccovuunn.
Overview of PolySpace In One Click
Setting the Active Project
Sending the Files to PolySpace Software

3-2
3-2
3-3

3-4

Using the Launcher to Start a Verification That Runs

onaClient iiiiiiiiinnnnnnn. 3-24
Starting the Verification 3-24
Monitoring the Progress of the Verification 3-25
Completing the Verification and Stopping the Launcher .. 3-26
Stopping the Verification Before It Completes 3-27

Reviewing Verification Results

4 |

About This Tutorial 4-2
L0 =) T 1= 4-2
Before You Start i i 4-2

Opening the Viewer and the Verification Results 4-3
Opening the Viewerc.iiiiiiiiineennnn.. 4-3
Selecting the Viewer Mode 4-3
OpeningtheResults 4-4

Exploring the Viewer Window 4-5
L0 =) T 1= 4-5
Reviewing the Procedural Entities View 4-7

Reviewing Results in Expert Mode 4-10
What Is Expert Mode? cciiiiiinnn... 4-10
Switching to Expert Mode 4-10
Reviewing Checks in Expert Mode 4-10
Reviewing Additional Examples of Checks 4-16
Filtering the Types of Checks That You See 4-21

Reviewing Results in Assistant Mode 4-27
What Is Assistant Mode?, 4-27
Switching to Assistant Mode 4-27
Selecting the Methodology and Criterion Level 4-28
Exploring Methodology for C 4-28
Reviewing Checks 4-30

Defining a Custom Methodology 4-32

vi

Automatically Testing Unproven Code 4-34

Generating Reports of Verification Results 4-35
PolySpace Report Generator Overview 4-35
Generating Report for example.c 4-36

Checking MISRA C Compliance

5

About This Tutorial 5-2
L0 =) T 1= 5-2
Before You Start i 5-2

Setting Up MISRA C Checking 5-3
Opening the Example Project 5-3
Setting the MISRA C Checking Option 5-4
Creatinga MISRACRulesFile 5-4
Excluding Files from the MISRA C Checking 5-8
Configuring Text and XML Editors 5-8
Saving the Project with a New Name 5-10

Running a Verification with MISRA C Checking 5-11
Starting the Verification 5-11
Examining the MISRACLogccvvvii... 5-12
Opening MISRA-CReport 5-15

Using a PolySpace Project Model File

6

About This Tutorial 6-2
OVeIVIEW o ittt ettt ettt e e 6-2
Before You Start 6-2

Creating a New PolySpace Project Model File 6-3
What Is a PolySpace Project Model File? 6-3

Contents

Creating the PolySpace Project Model File 6-3

Creating a Configuration File from a PolySpace Project

Model File i 6-10
Why You Must Have a Configuration File 6-10
Opening the Project Model File 6-10
Entering Additional Required Information 6-11
Saving the Configuration File 6-11
Deleting a Generic Target from the Preferences 6-13
Understanding the Generic Targets Preference 6-13
Deleting the Generic Target Added in This Tutorial 6-13
Index

vii

Contents

o
ol

Introduction to PolySpace

Products for Verifying C
Code

¢ “Product Overview” on page 1-2

¢ “Product Components” on page 1-5

¢ “Installing PolySpace Products” on page 1-6

¢ “Working with PolySpace Software” on page 1-7
® “Learning More” on page 1-10

¢ “Related Products” on page 1-11

1 Introduction to PolySpace® Products for Verifying C Code

Product Overview

In this section...

“Ensures Software Reliability” on page 1-2
“Decreases Development Time” on page 1-2

“Improves the Development Process” on page 1-3

Ensures Software Reliability

You can ensure the reliability of your C applications by using PolySpace®
verification software to prove code correctness and identify run-time errors.
Using advanced verification techniques, PolySpace software performs an
exhaustive verification of your source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

® Never has an error

® Always has an error

¢ [s unreachable

® Might have an error

With this information, you can be confident that you know how much of your

code is run-time error free, and you can improve the reliability of your code
by fixing the errors.

You can also improve the quality of your code by using PolySpace verification
software to check that your code complies with MISRA C® standards.’

Decreases Development Time

Using PolySpace verification software reduces development time by
automating the verification process and helping you to efficiently review
verification results. You can use it at any point in the development process,

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-2

Product Overview

but using it during early coding phases allows you to find errors when it is
less costly to fix them.

You use PolySpace software to verify C source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

® Green indicates code that never has an error.

Red indicates code that always has an error.
® Gray indicates unreachable code.

® Orange indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source
code. After you fix errors, you can easily run the verification again.

Using PolySpace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improves the Development Process

PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

1-3

Introduction to PolySpace® Products for Verifying C Code

1-4

PolySpace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.
® Quality assurance can check overall reliability of an application.

® Managers can monitor application reliability by generating reports from
the verification results.

Product Components

Product Components

The PolySpace products for verifying C code are combined with the PolySpace
products for verifying C++ code. These products are:

PolySpace® Client™ for C/C++
PolySpace® Server™ for C/C++

The user interface includes:

® The Launcher for setting up verification parameters and starting
verifications.

® The Viewer for reviewing verification results.

® Spooler for managing verifications that run on a server and downloading
results from a server to a client.

1-5

Introduction to PolySpace® Products for Verifying C Code

1-6

Installing PolySpace Products

In this section...

“Finding the Installation Instructions” on page 1-6

“Obtaining Licenses for PolySpace® Client for C/C++ and PolySpace® Server
for C/C++” on page 1-6

Finding the Installation Instructions

The tutorials in this guide require PolySpace Client for C/C++ and PolySpace
Server for C/C++. Instructions for installing PolySpace products are in the
PolySpace Installation Guide. Before installing PolySpace products, you must
obtain the necessary licenses.

Obtaining Licenses for PolySpace Client for C/C++
and PolySpace Server for C/C++

See “PolySpace License Installation” in the PolySpace Installation Guide for
information about obtaining licenses for PolySpace products.

Working with PolySpace® Software

Working with PolySpace Software

In this section...

“Basic Workflow” on page 1-7
“The Workflow in This Guide” on page 1-8
“Working with PolySpace Project Model Files” on page 1-9

Basic Workflow

The basic workflow for using PolySpace software to verify C source code is:

Set up project

A 4

Verify code

A4

3
Review verification results

In this workflow, you:

1 Use the Launcher to set up a project file.
2 Verify code on a server or client.

You can use the Launcher to start the verification or you can select files
from a Microsoft® Windows® folder and send them to PolySpace software for
verification. For verifications that run on a server, you use the Spooler to

Introduction to PolySpace® Products for Verifying C Code

1-8

manage the verification and download the results to a client. You can set an
option to check MISRA C compliance in the first stage of the verification.?

3 Use the Viewer to review verification results.

The Workflow in This Guide
The tutorials in this guide take you through the basic workflow, including
the different options for running verifications. The workflow that you follow

in this guide is:

Create new project

A 4

Verify code

A4

3
Review verification results

A 4

4
Check MISRA C compliance

In this workflow, you:

1 Create a new project that you use for the other steps in the workflow.

This step is in the tutorial Chapter 2, “Setting Up a Project File”.

2 Verify a single C file.

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the

MISRA Consortium.

Working with PolySpace® Software

This step is in the tutorial Chapter 3, “Running a Verification”. In this

tutorial, you verify the same file using three different methods of running a
verification:

¢ Using the Launcher to start a verification that runs on a server.
¢ Using PolySpace In One Click to send files to a server for verification.

¢ Using the Launcher to start a verification that runs on a client.

3 Review the verification results.

This step is in the tutorial Chapter 4, “Reviewing Verification Results”.

4 Modify the project to include MISRA C checking and review the MISRA C
violations in the example file.

This step is in Chapter 5, “Checking MISRA C Compliance”.

Working with PolySpace Project Model Files

A PolySpace project model file is a project file that includes generic target
processor information. You can use this file to share project information,
but you cannot use it to run a verification. The tutorial Chapter 6, “Using a

PolySpace Project Model File” shows you how to work with PolySpace project
model files.

1-9

1 Introduction to PolySpace® Products for Verifying C Code

Learning More

In this section...

“Product Help” on page 1-10
“The MathWorks Online” on page 1-10

Product Help

To access the help that came with your installation, select Help > Help or
click the Help icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:
/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
The MathWorks Online

For additional information and support, see:

www.mathworks.com/products/polyspace

1-10

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

Related Products

Related Products

In this section...

“PolySpace Products for Verifying C++ Code” on page 1-11
“PolySpace Products for Verifying Ada Code” on page 1-11

“PolySpace Products for Linking to Models” on page 1-11

PolySpace Products for Verifying C++ Code

For information about PolySpace products that verify C++ code, see the
following:

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/

PolySpace Products for Verifying Ada Code

For information about PolySpace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/

PolySpace Products for Linking to Models

For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

1-11

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products for Verifying C Code

1-12

Setting Up a Project File

e “About This Tutorial” on page 2-2

e “Creating a New Project” on page 2-3

2 Setting Up a Project File

2-2

About This Tutorial

In this section...

“Overview” on page 2-2

“Example Files” on page 2-2

Overview

You must have a project before you can run a PolySpace verification of your
source code. In this tutorial, you create the project that you use to run
verifications in later tutorials.

Example Files

This tutorial uses the source file example.c that comes with the installation.
You learn more about the files and folders required for this tutorial in
“Preparing the Project Folders” on page 2-4.

Creating a New Project

Creating a New Project

In this section...

“What Is a Project?” on page 2-3

“Preparing the Project Folders” on page 2-4
“Opening the PolySpace Launcher” on page 2-5
“Changing the Default Folder” on page 2-7

“Creating a New Project to Verify the Example C File” on page 2-9

What Is a Project?

In PolySpace software, a project is a named set of parameters for a verification
of your software project’s source files. A project includes:

e The location of source files and include folders
e The location of a folder for verification results

® Analysis options

You can create your own project or use an existing project. You create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

Project Type File Extension Description

Configuration cfg Required for running a
verification. Does not
include generic target

processors.

PolySpace Project ppm For populating a project

Model with analysis options,
including generic target
processors.

Desktop dsk In earlier versions of

PolySpace software, for
running a verification
on a client computer.

2-3

2 Setting Up a Project File

2-4

In this tutorial, you create a new project and save it as a configuration file
(.cfg).

Preparing the Project Folders

Before you start verifying a C file with PolySpace software, you must know
the locations of the C source file and the include files. You must also know
where you want to store the verification results.

For each project, you decide where to store source files and results. For
example, you can create a project folder, and then in that folder, create
separate folders for the source files, include files, and results.

For this tutorial, prepare a project folder as follows:

1 Create a project folder named polyspace _project.

2 Open polyspace_project, and create the following folders:
® sources
® includes

®* results
3 Copy the file example.c from
Install folder\Examples\Demo C_Single-File\sources
to
polyspace_project\sources
where Install folder is the installation folder.
4 Copy the files include.h and math.h from
Install folder\Examples\Demo_C_Single-File\sources
to

polyspace_project\includes

Creating a New Project

Opening the PolySpace Launcher

You use the PolySpace Launcher, a graphical user interface, to create a
project and start a verification.

To open the PolySpace Launcher:

® Double-click the PolySpace Launcher icon.

0

PolySpace
Launcher

¢ If you have only PolySpace Client for C/C++ software installed on your
computer, skip this step. If you have both PolySpace Client for C/C++
and PolySpace Client for Ada products on your system, the PolySpace
Language Selection dialog box will appear.

x

Select a3 langusge

¥ PolySpace for CIC++

" PolySpace for Ada

0K I Cancel

Select PolySpace for C/C++ and click OK.

The PolySpace Launcher window appears:

2-5

2 Setting Up a Project File

Specify
source files

Specify

include folders

Brvspocetamend |

Results Folder [-results-dir]

-

]

File Edit Tools Help
JJ@HIT x.[ﬂ|.ciﬁ.|. b '|'Q)
T
M,
I File Name I Absolute| Path - - =
Analysis options
----- General
----- Target/Compilation SpeCIfy
----- Compliance with standards ana'ySiS
----- PolySpace inner settings options
----- Precision/Scaling
----- Multitasking
I Include folders
Control

|_— verification

Send to PolySpace Server [

P Stert |

Monitor
progress

]_

| Compile : 0% | CDFA : 0% | Levell : 0% | Level2 : 0% |
00:00:00 00:00:00 00:00:00 00:00:00
Compile | search: ﬁ I Iﬂ
_E Stats Status I Description
@ Full Log
|
View log

The Launcher window has three main sections.

Creating a New Project

Use this For...
section...
Upper-left Specifying:

e Source files
® Include folders

e Results folder

Upper-right

Specifying analysis options

Lower

Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Changing the Default Folder

PolySpace software allows you to specify the default folder that appears in
directory browsers in dialog boxes. If you do not change the default folder, the
default folder is the installation folder. In this tutorial, you change the default
folder to the project folder that you created in “Preparing the Project Folders”
on page 2-4. Changing the default folder to the project folder makes it easier
for you to locate and specify source files and include folders in dialog boxes.

To change the default folder to the project folder:

1 Select Edit > Preferences.

The Preferences dialog box appears.

2 Setting Up a Project File

x

' | Remote Laun::herl Mis::ellaneuusl Results ﬁnlderl Default ﬁalderl Editcrsl Generic Ergetsl

Menu title Execution cormmand

Ok Apply Cancel

2 Select the Default folder tab.
3 Select Always use this specific folder if it is not already selected.

4 Enter or navigate to the project folder that you created earlier. In this
example, the project folder is C: \PolySpace\polyspace project.

The Preferences dialog box should now look like the following.

Creating a New Project

x

Toals Menul Remote Laun::herl Mis::ellaneuusl Results folder iD | Editcrsl Generic Ergetsl

Default folder for all browsers,

{+ Always use this spedific folder |C:\PolySpace\polyspace_project - |

i~ Use the current path as a default folder

Ok | Apply | Cancel |

5 Click OK to apply the changes and close the dialog box.

Creating a New Project to Verify the Example C File

You must have a project, saved with file type cfg, to run a verification. In this
part of the tutorial, you create a new project for verifying example.c.

You create a new project by:

® “Opening a New project” on page 2-10

® “Specifying the Source Files, Include Folders, and Results Folder” on page
2-11

® “Specifying the Analysis Options” on page 2-14
e “Saving the Project” on page 2-16

2 Setting Up a Project File

2-10

Opening a New project
To open a new project for verifying example.c:

1 Select File > New Project.

The Choose the language dialog box appears:
Bl Choose the language x|

i~ crp

(0] 4 I Cancell

2 Select C, then click OK.
The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

Creating a New Project

PolySpace Launcher for C - C:\PolySpace\polyspace_project\example.cfg i] 5]
File Edit Tools Help
Bl O x nlHE» Ge
Search internal name from the selected line: I 2 [:g?

Absolute Path
e_project)s

Name

Value

Internal name

Analysis options

[=--General
----- Session identifier Example_Project -prog
----- Date 05/01/2010 -date
----- Author username -author
----- Project version 1.0 -verif-version
----- Keep all preliminary results files I +eep-al-files
[El-Report Generation I

i-Report template name

C: \PolySpacePoly| ...

-report-template

CQutput format

RTF

-

report-output-format

- Target/Compilation

H--Compliance with standards

+--PolySpace inner settings

- Predsion,/Scaling

Include folders [I]

H--Multitasking

E C:\PolySpace \polyspace_projectlindudes

Results Folder [-results-dir]

.

C:'PolySpace\palyspace_project'yesults

Specifying the Source Files, Include Folders, and Results Folder
To specify the source files, include folders, and results folder for the

verification of example.c:

1 Click the green plus sign button in the upper right of the files section of

the Launcher window.

|

The Please select a file dialog box appears.

2-11

2 Setting Up a Project File

2-12

Please select a file

Look in:

2| o B o

x|

|‘§J example.c

I[‘.c}l files anly

[T Recurse subfolders

~Source files [-sources] rFolders to incude [-1]

C:\PolySpace\polyspace_projectisources\example.c

C:VPolySpace\polyspace_projectindudes

CK Cancel

2 The project folder polyspace_project should appear in Look in. If it does
not, navigate to that folder.

3 Select the folder includes and then click the green down arrow button
in the Folders to include section.

||
The path for the folder appears in the source files list.

4 Double-click the folder sources.

Creating a New Project

5 Select the file example.c and then click the green down arrow button in
the Source files section.

F

The path for example.c appears in the source files list.

Tip You can also drag folder and file names from an open folder directly to
the source files list or include list.

6 Click OK to apply the changes and close the dialog box.
7 In Results Folder, specify the folder for the verification results. Enter the
path for the results folder that you created earlier. In this example, the

results folder is C: \PolySpace\polyspace_project\results.

The files section in the upper left of the Launcher window now looks like:

2-13

2 Setting Up a Project File

2-14

Absolute Path

C:\PolySpacepolyspace_project\sources

File Name
IE:u:aranE.n:

Incude folders [-I]
1 [C:\PalySpace\polyspace_projectijindudes

Results Folder [-resulta-dir]
C:\PolySpace\polyspace_projectiresults =) |

& W

Specifying the Analysis Options

The analysis options in the upper-right section of the Launcher window
include identification information and parameters that PolySpace software
uses during the verification process. For more information about analysis
options, see “Options Description” in the PolySpace Products for C Reference.

To specify the analysis options for this tutorial:

Creating a New Project

1 In the General section, change the Session identifier to
Example_Project.

Note The session identifier cannot contain spaces.

2 Expand the Target/Compilation section.

3 Select no-predefined-OS from the drop-down menu next to Operating
system target for PolySpace stubs.

4 Keep the default values for all other options.

The analysis options will now look like this.

2-15

2 Setting Up a Project File

2-16

Search internal name fr

om the selected line:

S

Mame

Value

Internal name

Analysis options

[El-General
----- Session identifier Example_Project -prog
----- Date 05,/01,2010 -date
----- Author Lsername -author
----- Project version 1.0 -yerif-version
----- keep all preliminary results files r +eep-al-files
[Fl-Report Generation r
----- Report template name C:'\PolySpace\PolySpal ... |Teport-template
----- Qutput format RTF - -report-output-format
E :
R Target processor type sparc | .. |target
----- Operating system target for PolySpace stubs [no-predefined-05 = -05-target
----- Defined Preprocessor Macros D
----- Undefined Preprocessor Macros .U
----- Include . |-ndude

----- Command,/script to apply to preprocessed files

. |-post-preprocessing-command

----- Command/script to apply after the end of the

. |-post-analysis-command

+]-Compliance with standards

+-PolySpace inner settings

[
[2
[+#]-Predision/Scaling
[F-Multitasking

Saving the Project
To save the project:

1 Select File > Save project. The Save the project as dialog box appears.

Creating a New Project

x
Loak in: IlE:] polyspace_project LI _I ...5'

E E:j includes
.) resutts

hily Recent D, I (e

WL
“

ol mpLter
-
Py Pty

Session idertifier | Ok

Files of type: I*_ng LI Cancel

2 In Look in, leave the default folder, polyspace_project.
3 In Session identifier, enter example.

4 In Files of type, leave the default *.cfg. You must have a project file
with type cfg to run a verification.

Note You can also run a verification with a project file of type dsk. Older
versions of PolySpace software created files with type dsk for use with a
verification running on a desktop PC. For more information about the dsk
file type, see “What Is a Project?” on page 2-3.

5 Click OK to save the project and close the dialog box.

2-17

2 Setting Up a Project File

2-18

Running a Verification

e “About This Tutorial” on page 3-2
® “Opening the Project” on page 3-4

e “Using the Launcher to Start a Verification That Runs on a Server” on
page 3-5

e “Using PolySpace In One Click to Start a Verification That Runs on a
Server” on page 3-15

¢ “Using the Launcher to Start a Verification That Runs on a Client” on
page 3-24

3 Running a Verification

3-2

About This Tutorial

In this section...

“Overview” on page 3-2

“Before You Start” on page 3-3

Overview

Once you have created the project example.cfg as described in “Creating a
New Project” on page 2-3, you can run the verification.

You can run a verification on a server or a client.

Use...

For...

Server

® Best performance

Large files (more than 800 lines of code including comments)

Multitasking

Client

® An alternative to the server when the server is busy

Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

You can start a verification using the Launcher or using PolySpace In One
Click. With either method, the verification can run on a server or a client.

About This Tutorial

Use... For...

Launcher A basic way to start a verification.

You specify the source files in the project file.
With the project file open, you click a button to
start the verification.

PolySpace In One Click | A convenient way to start the verification of
several files which use the same verification
options.

Once you specify the project file containing the
verification options, you specify the source files
by selecting them from a Microsoft Windows
folder. You start the verification by sending the
selected files to PolySpace software.

In this tutorial, you learn how to run a verification on a server and on a
client, and you learn how to start a verification using the Launcher and using
PolySpace In One Click. You verify the file example.c three times using a
different method each time. You use:

1 The Launcher to start a verification that runs on a server.
2 PolySpace In One Click to start a verification that runs on a server.

3 The Launcher to start a verification that runs on a client.

Each verification stores the same results in polyspace_project\results.
You review these results in the tutorial Chapter 4, “Reviewing Verification
Results”.

Before You Start

Before you start this tutorial, you must complete Chapter 2, “Setting Up a
Project File”. You use the folders and project file, example.cfg, from that
tutorial.

3-3

3 Running a Verification

Opening the Project

To run a verification, you must have an open project file. For this tutorial, you
use the project file example.cfg that you created in Chapter 2, “Setting Up a
Project File”. Open example.cfg if it is not already open.

To open example.cfg:

1 If the PolySpace Launcher is not already open, open it by double-clicking
the PolySpace Launcher icon.

2 Select File > Open project.

The Please select a file dialog box opens.
3 In Look in, navigate to polyspace_project.
4 Select example.cfg.

5 Click Open to open the file and close the dialog box.

Using the Launcher to Start a Verification That Runs on a Server

Using the Launcher to Start a Verification That Runs on
a Server

In this section...

“Starting the Verification” on page 3-5

“Monitoring the Progress of the Verification” on page 3-7
“Downloading Results from the Server to the Client” on page 3-10
“Troubleshooting a Failed Verification” on page 3-12

Starting the Verification
In this part of the tutorial, you run the verification on a server.

To start a verification that runs on a server:

1 Select the Send to PolySpace Server check box next to the Start button
in the middle of the Launcher window.

Send to PolySpace Server W ¥ Start |

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

2 Click Start.

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-12.

The verification has three main phases:

3 Running a Verification

3-6

a Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C compiler, it ensures that
your code is portable, maintainable, and complies with ANSI® standards.

b Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main,
see “MAIN GENERATOR OPTIONS (-main-generator) for PolySpace
Software” in the PolySpace Products for C Reference.

¢ Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase completes:

* A message dialog box tells you that the verification completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

* A message in the log area tells you that the verification was transferred
to the server and gives you the identification number (Analysis ID) for
the verification. For this verification, the identification number is 1.

Send to PolySpace Server [¥ Start |

| Compile: 0%
00:Q0:00

| Intermediate ; 0% | Leveld : 0% | Levell: 0% | L
00:00:00 00:00:00 00:00:00

£ i Search: ﬁ I Iﬂ

Status Description
@ Full Log 1 |PolySpace Launcher for C verification start at Jan 5, 2010 17:31:33
e genera efau . e "drs-template. xml” can be found in <result_dir=...
— | 1 m ted default DRS XML file "drs-template. xml” can be found i It_di
nalysis ID has been queued wi :
I |eralysisIDhazb dwith ID : 16

3 When you see the message Verification process completed, click OK
to close the message dialog box.

4 Click on any message in the log to get details about the message.

Using the Launcher to Start a Verification That Runs on a Server

5 Stop the Launcher by clicking File > Quit.

Monitoring the Progress of the Verification
You monitor the progress of the verification using the PolySpace Queue
Manager (also called the Spooler).

To monitor the verification of Example Project:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

ﬂ PolySpace Queue Manager Interface - |EI|5|

Operations Help

ID Authar Application Results folder CPU Status Date Language
----- 4 PolySpace |Demo_C C:\PolySpace\PolySpaceForCandCPP_. .. runstr... |[completed |14-Dec-2009,... |C
----- 5 polyspace |\Demo_C_Single_File (C:'\PolySpace'\PolySpaceForCandCPP_... runstr... |completed [14-Dec-2009,... |C
[H-& PolySpace |Demo_C C:\PolySpace\polyspace_projectiresults completed [17-Dec-2009,... |C
E username |Example_Project (C:\PolySpace'polyspace_projectiresults frunstr... |running 05-1an-2010, ...

User mode

Connected to Queue Manager localhaost

Tip You can also open the Polyspace Queue Manager Interface by clicking

the PolySpace Queue Manager icon in the PolySpace Launcher toolbar.

2 Point anywhere in the row for ID 1.

3 Right-click to open the context menu for this verification.

3-7

3 Running a Verification

Follow Progress...
View Log File. ..
Download Results...

Stop...
Stop And Download Results. .,
Stop And Remove From Queue,.,

4 Select View log file.

A window opens displaying the last one-hundred lines of the verification.

" PolySpacehPolySpace_Common',Remotel auncher',whi

GUI files generation complete.

Generating remote file
Done

Certain (red? errors have been detected in the analysed code dugy
SE.

Analysis continuwing bhecause the option —continue—with-red—-error

3oE-30E 30 ~JuE—Jf—JaE—JaE—eE e 3o 3o -JaF-JE-JaE-JaE e e eE 3o -Jef-JnE-JuE-Juf-Jef—Jef-ef—uf—Juf-Jaf-JeE-JeE-Jef-ef—Jef—Juf—Juf-Jaf—JaE e e oo -Jef-JE-JaE-JaE-JeE e -JeE—ef-Jef-Jf-Jnf-Jnf-Jef-Jef-ef-ef-
CaXaZad

w3 Leyel 4 Software Safety Analysis done

CaXaZad

3oE-30E 30 ~JuE—Jf—JaE—JaE—eE e 3o 3o -JaF-JE-JaE-JaE e e eE 3o -Jef-JnE-JuE-Juf-Jef—Jef-ef—uf—Juf-Jaf-JeE-JeE-Jef-ef—Jef—Juf—Juf-Jaf—JaE e e oo -Jef-JE-JaE-JaE-JeE e -JeE—ef-Jef-Jf-Jnf-Jnf-Jef-Jef-ef-ef-
Ending at: Apr 11, 26088 12:29:8

Uzer time for pass4d: 35.8real. 35.8u + Bs

Uzer time for polyspace—c: 176.5real. 176.5u + A=

EaXaxad

#%% End of PolySpace Uerifier analysis
EaXaxad

Presz enter to closze the window ...

5 Press Enter to close the window.

3-8

Using the Launcher to Start a Verification That Runs on a Server

6 Select Follow Progress from the context menu.

A Launcher window labeled PolySpace follow remote analysis
progress for C appears.

H PolySpace follow remote code verification progress - | Ellil

File Edit Help

6 Stop Execution |

Tatal
00:00: 05 00:00:15 00:00:22 00:00:26 00:00:07 00:00:06 00:00:04 00:01:36

@ Coimpile Search 44 |Level 4 42
@ MISREA-C [Certain (Red) errors summary: ﬂ

Wstats - certain NTC, non termination of call to example.c.3quare_Root, File example.c, line 240, col

- certain NTC, non termination of call to _ polyspace_ stdstubs.c.sqgrt, File example.c, line 1
@Fu"mg - certain NTC, non termination of call to exawple.c.Recursion, File example.c, line 157, colum

- certain IDP, pointer within bounds, File example.c, line 104, column 10

- certain A3RT, failure of user aszertion, File _ polyspace stdstubs.c, line §66, column 2

GUI files generation complete.

Fenerating results in a spreadsheet format in C:iZPolydpace)\Polyipace_RLDatas‘analyzisl\FPolyipac

Generation complete

R T T A T A T A A N R R T R TR AT AL AR LA LR A L RTLHHHS

HEE =
*%% Zoftware Jafety Integration Analysis Lewel 4 done -
Kl | r'

“erification completed

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the
verification. The information appears in the log display area at the bottom
of the window. The full log displays by default. It display messages, errors,
and statistics for all phases of the verification. You can search the full log
by entering a search term in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

3-9

3 Running a Verification

3-10

7 Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

8 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

9 Click the refresh button

_@ |

to update the stats log display as the verification progresses.

10 Select File > Quit to close the progress window.

11 Wait for the verification to complete.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

_iBix
Operations Help
D Author Application Results folder CPU Status Date Language
----- 4 PolySpace |Demo_C C:\PolySpace\PolySpaceForCandCPP_. .. runstr... |[completed |14-Dec-2009,... |C
----- 5 polyspace |[Demo_C_Single_File |C:'\PolySpace'PolySpaceForCandCPP_... |runstr... |completed |14-Dec-2009,... |C
& PolySpace |Demo_C C:\PolySpace\polyspace_projectiresults completed [17-Dec-2009,... |C

Username

Example_Project

C:\PolySpace\polyspace _projectiresults |runstr... |completed

Connected to Queue Manager localhaost

05-Jan-2010, ...t

User mode

Downloading Results from the Server to the Client

At the end of the verification, the results are on the server. To download the
results to your client:

1 In the PolySpace Queue Manager Interface, select Download Results
from the context menu for the verification.

The Browse For Folder dialog box appears with the
polyspace_project\results folder selected.

Using the Launcher to Start a Verification That Runs on a Server

Directory where ko store the results

123 Perl ;I
=) PolySpace
=l 153 polyspace_project
I includes J
I resulks
I sources
I3 PalySpace_Results -
Folder: I results

Make Mew Faolder | (o] 4 I Cancel |

4

2 Click OK to close the dialog box.

A dialog box appears telling you that the download is complete and asking
if you want to open the PolySpace Viewer.

Question X

Download completed. Do you wank bo open PolySpace Yiewer 7

Yes Mo |

3 Click No.
4 Select Remove From Queue from the context menu.

A dialog box appears asking you to confirm that you want to remove the
verification from the queue.

3-11

3 Running a Verification

3-12

Question =

Do wou really want to removwe the analvsis 1 From the queue ?

Yes Mo |

5 Click Yes.

Note

¢ To download the results and remove the verification from the queue,
select Download Results And Remove From Queue from the context
menu.

¢ If you download results before the verification completes, you get partial
results and the verification continues.

6 Select Operations > Exit to close the PolySpace Queue Manager
Interface.

Once the results are on your client, you can review them using the PolySpace
Viewer. You review the results from the verification in Chapter 4, “Reviewing
Verification Results”.

Troubleshooting a Failed Verification

When you see a message that the verification failed, it indicates that
PolySpace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements

The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientc/requirements.html.

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Using the Launcher to Start a Verification That Runs on a Server

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration
You can:

e Upgrade your computer to meet the minimal requirements.

¢ Select the Continue with current configuration option in the General
section of the Analysis options and run the verification again.

You Did Not Specify the Location of Included Files

If you see a message in the log, such as the following, either the files are
missing or you did not specify the location of included files.

include.h: No such file or folder

For information on how to specify the location of include files, see “Creating a
New Project to Verify the Example C File” on page 2-9.

PolySpace Software Cannot Find the Server

If you see the following message in the log, PolySpace software cannot find
the server.

Error: Unknown host

PolySpace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

3-13

3 Running a Verification

3-14

x

..

—Remote configuration

¥ Set this option to use the server mode by default in every new project

Mote: this option is mandatory when the project contains multitasking options.

The multitasking options will be ignored otherwise.

{~ Automatically detect the remote server

{* Use the following server and port : localhost 12427

The server name ocalhost™ can be used if the server is the local machine.

Ok Apply Cancel

By default, PolySpace software automatically finds the server. You can

specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the PolySpace Installation Guide.

Using PolySpace® In One Click to Start a Verification That Runs on a Server

Using PolySpace In One Click to Start a Verification That
Runs on a Server

In this section...

“Overview of PolySpace In One Click” on page 3-15
“Setting the Active Project” on page 3-15

“Sending the Files to PolySpace Software” on page 3-17

Overview of PolySpace In One Click

In a Microsoft Windows environment, PolySpace software provides a
convenient way to streamline your work when you want to verify several
files using the same set of options. Once you have set up a project file that
has the options you want, you designate that project as the active project,
and then send the source files to PolySpace software for verification. You do
not have to update the project with source file information. This process is
called PolySpace In One Click.

In this part of the tutorial, using PolySpace In One Click, you learn how to:

1 Set the active project.

2 Send files to PolySpace software for verification.

Setting the Active Project

The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results folder from
the project.

To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

3-15

3 Running a Verification

The context menu appears.
Set active project k
Open ackive project - Example_Project

Viewer

Launcher

7 & T

Spoaler
Help »

Exit

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

3-16

Using PolySpace® In One Click to Start a Verification That Runs on a Server

Please set an active project. d |

Laak i I&} polvzpace_project j 4= fji v

includes
resulks
S0UFCES

Cia example.cfg

L

Open

Cancel

File narne: || j
=

il

Filez of type: IF'cul_l,ISpace configuration files

3 In Look in, navigate to polyspace_project.
4 Select example.cfg.

5 Click Open to apply the changes and close the dialog box.

Sending the Files to PolySpace Software
You can send several files to PolySpace software for verification. For this
tutorial, you send one file, example.c.

To send example.c to PolySpace software for verification:

1 Navigate to the folder polyspace project\sources.

3-17

3 Running a Verification

2 Right-click the file example.c.
The context menu appears.

Mame |

Lol

Open
Edit
Cpen with \WordPad
ca Scan For viruses, .,
Cpen YWith »
£l WinZip 3

Send To b

Cuk
Copy

Create Shortout
Delete
F.enames

Properties

3 Select Send To > PolySpace.

3-18

Using PolySpace® In One Click to Start a Verification That Runs on a Server

Marme | Size | Tvpe
e SKE CFile
Open
Edit
Cpen with WordPad
2 Scan for viruses, ..
Cpen Wikh »
&) WinZip 3
£] Compressed (zipped) Folder
uk @ Desktop (create shorbout)
apy [Fax Destination via RightFax
reate Shortouk (# Macromedia FreeHand M
Delete

| Mail Recipient
Rename
,D MMy Documents

Properties FalySpace

4L 314 Floppy (A2)

The PolySpace basic settings dialog box appears.

3-19

3 Running a Verification

PolySpace basic settings [C] - |E||5|

Settings

Precision |02

Passes [Pass2 (Saftware Safety Analysis level 2)

Results folder |C:"-..PonSpace"-ponspace _project\results

Verification Mode Settings

Function called before main |

Main generator write variables INone

Scope

C\PolySpacec_polyspace_project ‘sourcesexample.c

[1]+

[] Send to PolySpace Server D) S'ﬂrtl @Cannel |

4 Make sure that Results folder is polyspace project\results.

3-20

Using PolySpace® In One Click to Start a Verification That Runs on a Server

Settings
Precision IOZ j
Passes |P3332 (Software Safety Analysis level Z) j
Results folder |C:"-..F'0h,'S|:|ac:e"-poh'spac:e;rujed"fesufts | g

5 Select the Send to PolySpace Server option if it is not already selected.

6 Leave the default values for the other parameters.

Click Start.

The verification log appears.

3-21

3 Running a Verification

3-22

E:"-.,pulyspace _projecti results Example_Project.log

HEE O @ -

[FFuRchon Fandom_tiost 1= pUre . REtUFnE an ntisized valle.
Generating the Main ...

Zenerating call to function: RTE

Doing code transformations .

£33

=5 C zources verification done
E++4

[[Endling at: ksy 13, 2008 53220
|I=er time for suif: 54real, 5.4u + 0=
- |Zenerating remate file

. [Done

=er time for polyspace-c: 5.8real, 5.5u + Oz
EE+3

*** End of PolySpace Verifier analysis

£33

Ldding the analysis to the gqueue ..
Tranzfering the archive to the server ..

Tranzfer completed.
Aralysiz D1

The analysiz has heen gqueusad. You may followy ts progress using the spoaler.

al |

|The analyziz haz been succeszsfully done

The compile phase of the verification runs on the client. When the compile
phase completes:

® You see the message:
End of PolySpace Verifier analysis

* A message in the log area tells you that the verification was transferred to
the server and gives you the identification number (Analysis ID) for the
verification. For this verification, the identification number is 1.

Using PolySpace® In One Click to Start a Verification That Runs on a Server

e Monitor the verification using the Spooler. For information on using the
Spooler to monitor a verification on a server, see “Monitoring the Progress
of the Verification” on page 3-7.

® When the verification completes, download the results to
polyspace _project\results. For information on downloading results
from a server to a client, see “Downloading Results from the Server to the
Client” on page 3-10

You review the results in Chapter 4, “Reviewing Verification Results”.

3-23

3 Running a Verification

3-24

Using the Launcher to Start a Verification That Runs on a

In this section...

“Starting the Verification” on page 3-24
“Monitoring the Progress of the Verification” on page 3-25
“Completing the Verification and Stopping the Launcher” on page 3-26

“Stopping the Verification Before It Completes” on page 3-27

Starting the Verification

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

To start a verification that runs on a client:

1 Open the Launcher if it is not already open.
2 Open the project file example.cfg if it is not already open.

For information about opening a project file, see “Opening the Project”
on page 3-4.

3 Make sure that the Send to PolySpace Server check box is clear.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message

box. This warning only appears when you clear the Send to PolySpace
Server check box.

B Start
5 Click the Start button. _rI

Using the Launcher to Start a Verification That Runs on a Client

6 If you see a caution that PolySpace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-12.

Monitoring the Progress of the Verification

You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

send to PolySpace Server [

Intermediate : 100%) Leveld : 100% \rell.: 25% | Level

Q0:00:04 00:00:23 00:00:02 Qo
Compile Search: 44 I r
_E Stats Status Description File Line Cal
@ Full Log 1 |PolySpace Launcher for C verifi...

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Launcher window. Follow the next steps
to view the logs:

1 The compile log displays by default.

This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

3-25

3 Running a Verification

3-26

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

3 Click the refresh button
G |
to update the display as the verification progresses.

4 (Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Completing the Verification and Stopping the
Launcher

When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.
For this tutorial, do not open the Viewer at this point.

S x|
@ yerification process completed.
Do o wank to launch PolySpace Yiewer

Cancel |

To indicate that you do not want to open the Viewer:
¢ (Click Cancel.

You can also open the Viewer from the Launcher toolbar, but for this tutorial,
you do not do this. For this tutorial, close the Launcher.

To close the Launcher:

¢ Select File > Quit.

Using the Launcher to Start a Verification That Runs on a Client

In the tutorial Chapter 4, “Reviewing Verification Results”, you open the
Viewer and review the verification results.

Stopping the Verification Before It Completes

You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the
verification starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

@ Stop Execution |

A warning dialog box appears.

waming x|

@ Do wou really want to stop the current execution ?

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

3 Click OK to close the Message dialog box.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

3-27

3 Running a Verification

3-28

Reviewing Verification
Results

e “About This Tutorial” on page 4-2

® “Opening the Viewer and the Verification Results” on page 4-3
¢ “Exploring the Viewer Window” on page 4-5

¢ “Reviewing Results in Expert Mode” on page 4-10

e “Reviewing Results in Assistant Mode” on page 4-27

e “Automatically Testing Unproven Code” on page 4-34

® “Generating Reports of Verification Results” on page 4-35

4 Reviewing Verification Results

About This Tutorial

In this section...

“Overview” on page 4-2

“Before You Start” on page 4-2

Overview

In the previous tutorial, Chapter 3, “Running a Verification” , you completed a
verification of example.c. In this tutorial, you explore the verification results.

PolySpace Client for C/C++ provides a graphical user interface, called the
Viewer, that you use to review results. In this tutorial, you learn:

1 How to use the Viewer, including how to:

® Open the Viewer and open verification results.

Select the Viewer mode.

Explore results in expert mode.

Explore results in assistant mode.

® Generate reports.

2 How to interpret the color-coding that PolySpace software uses to identify
the severity of an error.

3 How to find the location of an error in the source code.

Before You Start

Before starting this tutorial, be sure to complete the tutorial Chapter 3,
“Running a Verification”. In this tutorial, you use the verification results in
this file:

polyspace_project\results\RTE_px_02_Example_Project_ LAST_RESULTS.rte.

4-2

Opening the Viewer and the Verification Results

Opening the Viewer and the Verification Results

In this section...

“Opening the Viewer” on page 4-3
“Selecting the Viewer Mode” on page 4-3

“Opening the Results” on page 4-4

Opening the Viewer

You use the Viewer to review verification results. Open the Viewer if it is
not already open.

To open the Viewer:

® Double-click the PolySpace Viewer icon:

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

Selecting the Viewer Mode

You can review verification results in expert mode or assistant mode:

® In expert mode, you decide how you review the results.

¢ In assistant mode, PolySpace software guides you through the results.

You switch from one mode to the other by clicking a button in the Viewer
toolbar. For this part of the tutorial, the Viewer should be in expert mode.
If the Viewer is in expert mode, the mode button in the toolbar displays
Assistant.

4 Reviewing Verification Results

4-4

G pssistant

If the Viewer is not in expert mode, click the mode button to switch to expert
mode.

§" Expert
You learn more about expert and assistant modes later in this tutorial.

Opening the Results

To open the verification results:

1 Select File > Open.

2 In the Please select a file dialog box, navigate
to polyspace _project\results and select the file
RTE_px_02_Example_Project_LAST_RESULTS.rte.

3 Click the Open button.

The results appear in the Viewer window.

Note The file RTE_px_02_Example_ Project_ LAST_RESULTS.rte represents
the verification with the highest level of precision. The lower level results
files that you see in the polyspace_project\results folder represent lower
precision verifications.

Exploring the Viewer Window

Exploring the Viewer Window

In this section...

“Overview” on page 4-5

“Reviewing the Procedural Entities View” on page 4-7

Overview
The PolySpace Viewer looks like:

4-5

4 Reviewing Verification Results

4-6

Coding review progress view

PolySpace Viewer - C:\PolySpace\po|

File Edit Reports Windows Help

Selected check view

space_project_c\results\RTE_px_Example_Project_LAST_RESULTS.rte _

=o =]

[6n = o|s =

H e 1 J 'Eg's-ﬂlffj-mpha Vl(pq’.ﬂsislantl

JSaard’\ in: | Activ|: Source Code | ™ I

He~ 1255

J Reviewed filter off 'I x| PRECT | ommozov MY SERL e com o me s MY we TR mser o wro o kaTo [Tl une o von
Coding review progress Count Progress example.c / Recursion_caller / line 157 / column 5
num NTC reviewed / num NTC to review (Red) 13 33 Becursion{ sx); // zlways encounters = division by zero
num reviewed | num to review (Red) 1f5 20
Software reliability indicator l99/191 51 [|NOW L” =l @I
the example.c.Recursion call never terminates
Procedural entities i % | Detalls |Reviewed|Acronym Call Tree View ol
| 5ej Example_Project 5 5 ol .{: :}‘
E 4 2 fexample.c r
12 | 77 example.c
- ° r Example_Froject
& | 11 | 100 fexample.c r .
[E]-__polyspace_ stdstubs.emo o F 175 4 - b pst_stubs_D.random_int 152
RRE 2| 88 |12 | % jpamekc r _
b4 _polyspace_ stdstubs. _init | 175 4 - b =sxamgle Recursion 157
3| 222| 5 | 100 fexample.c r
-4 _polyspace_ stdstubs.sart 285(31 - b example Recursion 147
4| 137 | 12 | 83 |examplec r
pst_stubs_O.random Jint 182
4151 | 12 | 100 jexample.c r
examle. Recursion 184
182 | 10 ffunctionr...| [T
b example.Recursfan 147
155 8 local varia..| [T] -
155 | 16 local varia..| [T 'vs- i o
polyspace_min.main 5
157 5 heeam..| [[NOW e
8z 5 ffunctionr...| [T 4] |
2 4| 185 | 12 | 100 jexample.c r
o |2 woparene | = R
3 2158 | 12 | 92 jexample.c r =]
2z]2t [11] 50 fexamplec r 150
% |8 raming : .| r 151 atatic woid Recursion_caller (woid)
= |2 ——— - 152 { int x=randow inti);
% |10 local varia..| [T L33
27 |8 local varia..| [T 154
s 1558 if (i(x»-4) s& (2 < -11)
2|14 1 % | polysps.| [T Tee o =
2|1 100| polyspa..| [T

the exa|nple.c.Recursion call never terminates Col: 5

159

160

161 ® = 10;

162 | 3£ (zendon inc() 3 0)
163 1

157 Recursion(&x): /4 always encounters a diwision by zero
136 } Q‘

Procedural
entities view

Variables

view

Source code
view

Call tree
view

The appearance of the Viewer toolbar depends on the Viewer mode. Because

the Viewer is in expert mode, the expert mode toolbar displays.

Exploring the Viewer Window

A B e 1| & e 3] 6 amn

HIY |
other

FLOAT

NI | SCAL _ _
WIF niFL

PROC
S » OBAI - ZDV) eq) ooFL IDF | COR | IRM - SHF -

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The
following table describes these views.

This view...

Displays...

Procedural entities view (lower left)

List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right)

Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right)

Details about the selected check

Variables view

Information about the global
variables declared in the source code

Note The file that you use in
this tutorial does not have global
variables.

Call tree view

Tree structure of function calls

You can resize or hide any of these sections. You learn more about the Viewer
window later in this tutorial.

Reviewing the Procedural Entities View

The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (run-time error)

4 Reviewing Verification Results

view. When you first open the results file from the verification of example.c,
the procedural entities view looks like:

Procedural entities i1 ~|Line| Col| & Details Reviewed| Acronym
o - BRI -
-example o 4 | & 2] 1 T3 [eeample.c I_
f-__pohyspace_ stdstubs| 1 |33 1 35| pohyspsce stdstubs.c I-
j...._PDhrEpaDa_n’air_c 1 0 | pohyspace_main.c I-

The file example.c is red because its has a run-time error. PolySpace software
assigns a file the color of the most severe error found in that file. The first
column of the table is the procedural entity (the file or function). The following
table describes some of the other columns in the procedural entities view.

Column
Heading

Indicates

1]

Number of red checks (operations where an error always
occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

e | 1| 1 | 1

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

Tip If you see three dots in place of a heading, J, resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

4-8

Exploring the Viewer Window

Note You can select which columns appear in the procedural entities view
by editing the preferences.

What you select in the procedural entities view determines what displays in
the other views. In the following examples, you learn how to use the views
and how they interact.

4-9

4 Reviewing Verification Results

Reviewing Results in Expert Mode

In this section...

“What Is Expert Mode?” on page 4-10

“Switching to Expert Mode” on page 4-10
“Reviewing Checks in Expert Mode” on page 4-10
“Reviewing Additional Examples of Checks” on page 4-16

“Filtering the Types of Checks That You See” on page 4-21

What Is Expert Mode?

In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode

If the Viewer is in expert mode, the mode toggle button displays Assistant. If
the Viewer is in assistant mode, the mode toggle button displays Expert. To
switch from assistant to expert mode:

e (Click the Viewer mode button:

~'§.'.‘ Expert

The Viewer window toolbar displays buttons and menus specific to expert
mode.

Reviewing Checks in Expert Mode

In this part of the tutorial, you learn how to use the Viewer window views to
examine checks from a verification. This part of the tutorial covers:

o “Selecting a Check to Review” on page 4-11
® “Displaying the Calling Sequence” on page 4-12
¢ “Tracking Review Progress” on page 4-13

* “Tracking Reviewed Checks in Procedural Entities View” on page 4-15

4-10

Reviewing Results in Expert Mode

Selecting a Check to Review

In the procedural entities view, example.c is red, indicating that this file has
at least one red check. To review a red check in example.c:

1 In the procedural entities section of the window, expand example.c.
2 Expand the red procedure Pointer Arithmetic().

A color-coded list of the checks performed on Pointer Arithmetic()
appears:

= BRI e

..... & OWFL.Z T 94 (23 joperation [+] on scalar does not ...
..... +F IDF % (6 pointer is within its bounds

..... | | & function returns an initislized valus
..... W IRVT 0m) 2 function returns an initialzed valee
..... -,i w2 104 | 10 Error : pointer is outside its bounds
..... MW UNR 07| 8 unreschable code

..... W OVFL. 12 1 108 | 11 Uinreachable check : overflow op...
..... - |RV.13 12| & function returns an initislzed valus
..... 114 | 18 WWarning : pointer may be owtside. ..
..... W IDFP.Z2 15| & pointer is within its bounds

Each item in the list of checks has an acronym that identifies the type

of check and a number. For example, in IDP.8, IDP stands for Illegal
Dereferenced Pointer. For more information about different types of checks,
see “Check Descriptions” in the PolySpace Products for C Reference.

3 Click the red IDP.S8.

The source code view displays the section of source code where this error
occurs.

4-11

4 Reviewing Verification Results

= example.c

92 int i, ¥p = array;

a3

94 for(i = 0; 1 «< 100; ii+])

a5 {

a5 no= 0;

97 i

95 i

99

1nn if{get bus= =status=()] > 0)

101 {

10z if(get oil pressure(] > 0]
103 !

104 Fp o= 5 /% Out of bounda */
10& 1

106 else

107 {

108 i++;

1049 3

110 1

4 At line 104 of the code, click the red code.

An error message box displays indicating that when the pointer p is
dereferenced, it is outside of its bounds. At line 92, p points to the start of
array which has 100 elements. The for loop starting at line 94 initializes
the elements of array to 0. This for loop leaves p pointing to the location
after the last element of array.

Displaying the Calling Sequence

You can display the calling sequence that leads to the code associated
with a check. To see the calling sequence for the red IDP.8 check in
Pointer_Arithmetic():

1 Expand Pointer_Arithmetic().

2 Click the red IDP.8.

4-12

Reviewing Results in Expert Mode

3 Click the call graph button in the toolbar.
s
A window displays the call graph.

Example_iject—Cﬂ graph for che

i =] B
& < 0% - — -
Example_Project - Call graph for check example.c Pointer_Arithmetic, IDP.8 38
__polyspace_main.c example.c example.c example.c
main RTE Pointer _Arithmetic IDP.8

The code associated with IDP.9 is in Pointer_Arithmetic. The generated
main function calls RTE, which calls Pointer_Arithmetic.

Tracking Review Progress

You can keep track of the checks that you have reviewed by marking them. To
mark that you have reviewed the red IDP.8 check in Pointer_ Arithmetic():

1 Expand Pointer_ Arithmetic().

2 Click the red IDP.S8.

A table with statistics about the review progress for that category and
severity of error appear in the upper-left part of the window.

4-13

4 Reviewing Verification Results

Coding review progress Count | Progress :
finum IDP reviewed / num IDP to review (Red) |0/1]
linum reviewed | num to review (Red) 0,5]

Software reliability indicator 113/230 49

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of reviewed checks
to total checks having the color and category of the current check. In this
example, it displays the ratio of reviewed red IDP checks to total red IDP
errors in the project.

The second row displays the ratio of reviewed checks to total checks having
the color of the current check. In this example, this is the ratio of red errors
reviewed to total red errors in the project. The third row displays the ratio
of the number of green checks to the total number of checks, providing an
indicator of the reliability of the software.

Information about the current check (the red IDP.8) appears in the
upper-right part of the Viewer window.

example.c / Pointer_Arithmetic / line 104 f column 10

mo= 5; / Out of bounds */

W |now =]

LI @ Fix How

rror @ pointer is outside its bounds
dereference of wvariabkle 'p' (pointer to int 32, size: 32 bita):
pointer is not null
points to 4 bytes at offset 400 in allocated buffer of 400 bytes
may point to varisble or field of veriable in: [Pointer Arithmetic:array}

4-14

3 After you review the check, select an acronym to describe the check in the

Predefined acronyms menu:
e NOW - Bug to fix now.
¢ NXT - Bug to fix in Next Release

Reviewing Results in Expert Mode

ROB - Robustness Issue
DEF — Defensive Code

MIN — Minor quality issue
OTH - Other

Note You can also define your own acronyms. See “Defining Custom

Acronyms ”.

4 In the comment box, enter additional information about the check.
5 Select the check box to indicate that you have reviewed this check.

The Coding review progress part of the window updates the ratios of

errors reviewed to total errors.

Coding review progress Count | Progress

finum IDP reviewed / num IDP to review (Red) |1/1 100
(inum reviewed / num to review (Red) 1/5 20
Software reliability indicator 113/230 45

Tracking Reviewed Checks in Procedural Entities View

The Procedural entities view in the Viewer displays which checks you have
reviewed and the predefined acronym you used to describe each check.

4-15

4 Reviewing Verification Results

4-16

I Procedural entites | | 3| #|-~|Line| Col| = Details Reviewed | Acronym
@ Example_Project 5 (44 43 a1 r
E]--=xample.c 4 & 35 1 BB ample.c |_
0- 4|37 |12 | 57 |example.c r
- Man_|nfinitz_Loop I 88 | 11| 100 jsxample.c r
[3-Fointer_Arithmatic z 2| 83 |12 | 90 jeamplec r
..... o OVFL.2 T 24 (23 loperation [+] on scal... |_
..... +F IDF % | 6 pointar is within its b.. -
..... & IR o) 5 function returns an i... |-
..... o IRV.T w2 5 function returns. an i... -

..... ? - 04 [10 Error : pointer iz out... W |Mow

..... MW UNR. 07| 8 unreachable cods I_
..... W OVFL.IZ 1 108 | 11 Unreachable check ... |-
..... IR 12| & function returns an i... -
..... -j 114 | 18 WWarning : pointer m... |_
..... DF 22 g & pointer is within its b. .. I_

Tip If you do not see the Reviewed column, resize the Procedural entities
view to display the column. If it does not appear, right click the Procedural
entities column heading and select Reviewed.

You can select the Reviewed check box to mark a check as reviewed.
Selecting this check box also automatically:

¢ Selects the check box for that check in the current check view (upper-right
part of the window).

e Updates the counts in the coding review progress view (upper-left part
of the window).

Reviewing Additional Examples of Checks

In this part of the tutorial, you learn about other types and categories of
errors by reviewing the following examples in example.c:

e “Example: Unreachable Code” on page 4-17

Reviewing Results in Expert Mode

e “Example: Arithmetic Error” on page 4-18
¢ “Example: A Function with No Errors” on page 4-18

¢ “Example: Division by Zero” on page 4-19

Example: Unreachable Code

Unreachable code is code that never executes. PolySpace software displays
unreachable code in gray. In the following example, you look at an example
of unreachable code.

1 In Procedural Entities, click Unreachable Code().

The source code for this function displays in the source code view.

)
1949 static wold Tnreachahle Code (woid)

200 /% Here we demonstrate Polvy3pace Verifier's ability to
Z01 identify unreachable sections of code due to the
202 wvalue constraints placed on the wariables,

203 */

204 ! int x = random int();

205 int ¥ = random int();

206

207 if (= > 7]

208 {

209 X=X - ¥

210 if (X < 0)

211 {

212 =2+ 1:

213 1

214 1

215

2 Examine the source code.

At line 212, the code x = x +1 is never reached because the condition x
< 0 1s always false.

4-17

4 Reviewing Verification Results

4-18

Example: Arithmetic Error

In the following example, PolySpace software detects a memory corruption
error:

1 In Procedural entities , expand the red Square_Root () function.

The source code for this function displays in the source code view.

=
1749 gtatic wold JFgquare Root _conv (double alpha, float *beta_pt)
1a0 A% Perform arithmetic conwversion of alpha to beta */

151 !

182 fheta pt = (float]) ((1.5 + coz(alpha))/s5.0);

183 3

la4

1585 gtatic woid Square Foot (woid)

186 {

1587 double alpha = random £loat();

158 float heta:

159 float ganma;

lan

191 Fmuare FHoot_conv (alpha, sbeta):

192

193 gawma = [floatjsgritibeta - 0.75); A* always sqrtinegative
104 1

1hAE

2 Examine the source code.
Because beta is always less than 0.75, the argument to the sqrt () function

at line 193 1s always negative.

Example: A Function with No Errors

In the following example, PolySpace software determines, in code with a large
number of iterations, that a loop terminates and a variable does not overflow:

1 In Procedural entities, click the green Non_Infinite_Loop() function.

Reviewing Results in Expert Mode

The source code for this function displays in the source code view.

BE gtatic int Non Infinite Loop (woid)
67 { const int big = 1073741821 ; /% 2%¥%30-3 +/
it int x=0, ¥=0;

69

70 while [1)

71

Tz {

73 if (¥ » big) { break:}

T o=H ot Z:

75 ¥o=ux S 2

TG 1

77

75 ¥ ==/ 100;

79 return ¥;

&0 1

2 Examine the source code. The variable x never overflows because the while
loop at line 70 terminates before x can overflow.

Example: Division by Zero
In the following example, PolySpace software detects division by zero:

1 In Procedural entities, expand Recursion().

The source code for this function displays in the source code view.

4-19

4 Reviewing Verification Results

4-20

137
135
133
140
141
14z
143
144
145
l4a
147
145
149
150
151
132
153
154
155
158
157
158
159
la0
lal
laz
1a3
lad

las

=

static wolid Recursion (int* depth)
% 1if depth<0, recursion will lead to division by =zero */
{ float adwvance:

#depth = *depth + 1:
adwance = 1.0£/(float) (¥depth); /% potential division by zero */

if {*depth < 50)
{

Becursion(depth) ;

'

static woid Recursion_calleriwoid)
{ int x=random int(]:

if ([(xx-4) &6 (X < -1]]
{

Becursion(&x ! A4 oalways encounters a divizion by zero

¥ = 10;
if (random int{) = 0)
{

Recursion(&x ! A% never encounters a division by zero ¥4

2 Examine the Recursion() function.

Reviewing Results in Expert Mode

When Recursion() is called with depth less than zero, the code at line
142 will result in division by zero. The orange color indicates that this is a
potential error (depending on the value of depth).

3 Examine the red Recursion_caller function.

The first call to Recursion() at line 157 is red because it calls
Recursion() with depth less than zero, causing a division by zero. The
second call to Recursion() at line 164 does not cause division by zero
because it calls Recursion() with depth greater than zero.

Filtering the Types of Checks That You See

You can filter the checks that you see in the Viewer so that you can focus

on certain types of checks. PolySpace software provides three predefined
composite filters, a custom composite filter, and several individual filters. You
learn about filters in the following sections:

¢ “Using Composite Filters” on page 4-21

¢ “Using the Custom Filter” on page 4-23
¢ “Using Individual Filters” on page 4-25

Using Composite Filters

Composite filters combine individual filters, allowing you to display or hide
groups of checks.

Use this filter... To...

Alpha Display all checks

Beta Hide NIV, NIVL, NIP, Scalar OVFL,
and Float OVFL checks

Gamma Display red and gray checks

User def Hide checks as defined in a custom

filter that you can modify

The default filter is Custom. You learn more about the User def filter in
“Using the Custom Filter” on page 4-23. You select a composite filter from
the filter menu.

4-21

4 Reviewing Verification Results

4-22

Custom hd I

Filter all

Alpha

Beta
Gamma
Undefined

To learn how the composite filters affect the display of checks:

1 Select Alpha from the filter menu to display all the checks for
Square_Root ().

Square_Root ()has seven checks: four green, one red, and two gray.

[} Square_Root

2 Select Beta from the filter menu to hide the NIV, NIVL, NIP, Scalar OVFL
and Float OVFL checks.

[} Square_Raoot

Now, only three checks are visible: two IRV and one NTC.
3 Select Alpha to display all checks again.

4 Select Gamma to display only the red and gray checks.

Reviewing Results in Expert Mode

Now, only three checks are visible: one red and two gray.

Using the Custom Filter

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By
default, the custom filter hides the OBAI, NIV local, IDP, COR, IRV, NIV
other, NIP, and NTL checks as shown in the following figure.

E
i J . d.,t(‘ . i“""s chug‘t:}m vI. ;'§;~ CeETh JSearch in: | Active Source Code |

-D;‘ﬁgr-l wIp o FEEET. RSRT . WTG - KNTE I NTL = UNR - NOA

] | | WIM EGAL I | |
Iuanl Zou Ilncal GuFL | 'OF | COR | RY . SHF

To modify the custom filter:

1 Select Custom from the composite filters menu.
2 Select Edit > Custom filters.

The Custom filter setup dialog box appears.

4-23

4 Reviewing Verification Results

Custom filter setup - PolySpace Viewer — |EI|£|

Select the checks or colors to hide when the custom filter is set.

rCheck Filters Color Filters
[V Dut of Bound Array Index Checks I~ Gray Checks
I~ Zero Division Checks I~ Crange Checks
¥ Mon-Initialized Local Variable Checks [~ Green Checks
I~ Scalar Overflow Checks I~ Errors in non executable procedures
¥ Tlegal Dereferenced Pointer Checks I~ orange checks possibly impacted by inputs

¥ Correctness Condition Checks
[V Initialized Returned Value Checks

I~ Shift Amount out of Bounds or Left Operand of Left Shift Checks

¥ Mon-Initizlized Variable Checks ~Float [Scalar Filters
¥ Mon-Initialized Pointer Checks I~ Float Chedks
[~ Float Overflow Checks [Scalar Checks

I~ User Assertion Checks

™ Unknown Non-Termination of Call Checks
I™ Known Non-Termination of Call Checks
¥ Mon-Termination of Loop Checks

I~ Unreachable Code Checks

I~ value On Assigned {only displayed, not counted)

Ok | Apply | Cancel |

3 Clear the filters for the checks that you want to display. For example, if you
clear the Out of Bound Array Index Checks box, these checks display.

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.

5 Click OK to apply the changes and close the dialog box.

PolySpace software saves the custom filter definition in the Viewer
preferences.

4-24

Reviewing Results in Expert Mode

Using Individual Filters

You can use an individual filter to display or hide a given check category,
such as VOA. When a filter is enabled, that check category does not display.
For example, when the VOA filter is enabled, VOA checks do not display.
When the filter is disabled, that check category displays. For example, when
the VOA filter is disabled, VOA checks display. You can also filter by check
color. To enable or disable an individual filter, click the toggle button for that
filter on the toolbar.

Tip The tooltip for a filter button tells you what filter the button is for and
whether the filter is enabled or disabled.

To learn how an individual filter affects the display of checks:
1 Expand Square_Root ().
2 Select Alpha from the composite filters menu to display all checks.

3 Click the IRV filter button

IRW

to hide the IRV check for Square_Root ().

B3-S

4 Click the IRV filter button again to display the IRV check.

5 Click the green checks filter button

e

to hide the green checks.

4-25

4 Reviewing Verification Results

Note When you filter a check category, some red checks with that category
display. For example, if you filter IDP checks, IDP.8 still displays under
Pointer_Arithmetic().

4-26

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...
“What Is Assistant Mode?” on page 4-27

“Switching to Assistant Mode” on page 4-27

“Selecting the Methodology and Criterion Level” on page 4-28
“Exploring Methodology for C” on page 4-28

“Reviewing Checks” on page 4-30

“Defining a Custom Methodology” on page 4-32

What Is Assistant Mode?

In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
to you in this order:

1 All red checks

2 All blocks of gray checks (the first check in each unreachable function)

3 Orange checks according to the selected methodology and criterion level

You learn about methodologies and criterion levels in “Selecting the
Methodology and Criterion Level” on page 4-28.

Switching to Assistant Mode

If the Viewer is in assistant mode, the mode toggle button displays Expert. If
the Viewer is in expert mode, the mode toggle button displays Assistant. To
switch from expert mode to assistant mode:

. ‘ G pssistant
e (Click the Viewer mode button

The Viewer window toolbar displays controls specific to assistant mode.

4-27

4 Reviewing Verification Results

JIMethndnlngy for Model Based Designedj r— |_ Skip gray chechks 4 <§ '@}' §> [
1 2 a

4-28

The controls for assistant mode include:

® A menu for selecting the review methodology for orange checks
e A slider for selecting the criterion level within that methodology
¢ A check box for skipping gray checks

® Arrows for navigating through the reviews

Selecting the Methodology and Criterion Level

A methodology is a named configuration that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology
has three criterion levels. Each level specifies the number of orange checks
for a given category. The levels correspond to different development phases
that have different review requirements. To select the methodology and level
for this tutorial:

1 Select Methodology for C from the methodology menu.

ethodalogy for C LI
Methodaology for Ada

Methodaology for ©
Methodaology for C++
Methodalogy for Model Based Designed

2 If the level slider is not already at 1, move the slider to level 1.

J—

1 2 3

Exploring Methodology for C

In this part of the tutorial, you examine the configuration for Methodology
for C. To examine the configuration for Methodology for C

1 Select Edit > Preferences.

Reviewing Results in Assistant Mode

The Preferences PolySpace Viewer dialog box appears.
2 Select the Assistant configuration tab.
The configuration for Methodology for C appears.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

: Assistant configuration Character encoding
~Mumber of checks to review
Criterion 1 Criterion 2 Criterion 3
—Camman
DV 5 20 ALL
MIVL 10 50 ALL
S-OVFL 10 50 ALL
COR. 10 10
NIV 0 10
F-OVFL 5 10 20
ASRT 5 20
—C & C++only
OBAIL 10 20 ALL
SHF 5 10 ALL
= IDP 10 20
NIP 10 20
—C only
b IRV 5 20 ALL

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

4-29

4 Reviewing Verification Results

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (in assistant mode).

—Configuration set

IMEﬂmdulngy for C LI

r Set number of checks to review as percentage
of green and justified arange checks

~Review threshold criterion

Criterion 1 Fresh code
Criterion 2 Linit tested
Criterion 3 Code review

For the configuration Methodology for C, the criterion names are:

Criterion Name in the Tooltip
1 Fresh code

2 Unit tested

3 Code Review

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which PolySpace software
presents them:

1 All reds

2 All blocks of gray checks (the first check in each unreachable function)

4-30

Reviewing Results in Assistant Mode

Note You can skip gray checks by selecting the Skip gray checks check
box in the toolbar.

3 Orange checks according to the selected methodology and criterion level

Earlier in this tutorial, you selected Methodology for C, criterion 1. In this part
of the tutorial, you review the checks for example.c using this methodology

and criterion. To navigate through these checks:

1 Click the forward arrow

In the procedural entities view (lower left), RTE() expands and NTC.3 is
the current check.

Procedural entities
ﬁ Example_Project

e
[H]-example.c

The source code view (lower right) displays the source for this check and
the current check view (upper right) displays information about this check.

4-31

4 Reviewing Verification Results

4-32

Note You can display the calling sequence and track review progress as
you did in “Reviewing Results in Expert Mode” on page 4-10.

2 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box appears asking if you want to start again
from the first check.

Wrapping search El
@ End of the set of checks under review,
Do wou want o start again From the first check?

o |

3 Click No.

Defining a Custom Methodology

You cannot change the predefined methodologies, such as Methodology for
C, but you can define your own methodology. In this part of the tutorial, you
learn how to create and use your own methodology.

The methodology that you create is the Methodology for C with one change.
To define your custom methodology:
1 Select Edit > Preferences.
The Preferences PolySpace Viewer dialog box appears.
2 Select the Assistant configuration tab.

3 Select Add a set from the menu in Configuration set.

4 In the Create a new set dialog box, enter My methodology for the name
and click Enter to close the dialog box.

Reviewing Results in Assistant Mode

5 Under the Criterion 1 column, enter the number 1 next to IDP. This tells
PolySpace software to select up to one orange IDP for review.

6 Click OK to save the methodology and close the dialog box.
To use My methodology:

1 Select My methodology from the methodology menu.

2 If the level slider is not already at 1, move the slider to level 1.

3 Click the forward arrow ? to review the checks.

With this methodology at criterion 1, you review the orange IDP.17 (you
did not review IDP.17 earlier in the tutorial because the number of orange
IDP checks in Methodology for C, criterion 1 is zero).

4 End PolySpace Viewer by selecting File > Quit.

4-33

4 Reviewing Verification Results

Automatically Testing Unproven Code

Reviewing orange code to find true errors is time-consuming. You can use the
Automatic Orange Tester (AOT) to automatically create and run test cases to
identify errors in the orange code. The workflow for using the AOT is:

1 Set an option to indicate that you want to prepare automatic tests.

2 Run the verification to prepare the tests and verify the source code.

3 When the verification is finished, run the test cases.

4 Review the results.

To learn how to use the AOT, see “Automatically Testing Orange Code” in the
PolySpace Products for C User’s Guide.

4-34

Generating Reports of Verification Results

Generating Reports of Verification Results

In this section...

“PolySpace Report Generator Overview” on page 4-35

“Generating Report for example.c” on page 4-36

PolySpace Report Generator Overview

The PolySpace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

The PolySpace Report Generator provides the following report templates:

Coding Rules Report — Provides information about compliance with
MISRA-C Coding Rules, as well as PolySpace configuration settings for
the verification.

Developer Report — Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
PolySpace configuration settings for the verification.

Developer with Green Checks Report — Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

Quality Report — Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and PolySpace configuration settings for
the verification.

The PolySpace Report Generator allows you to generate verification reports in
the following formats:

HTML

PDF

RTF

Microsoft Word
XML

4-35

4 Reviewing Verification Results

4-36

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

Generating Report for example.c

You can generate reports for any verification results using the PolySpace
Report Generator.

To generate a verification report:

1 In the Viewer, open your verification results if they are not already open.
2 Select Reports > Run Report.

The Run Report dialog box opens.

Run Report

—Select Report Template

C:'\PolySpace'PolySpace_Common'ReportGenerator itemplates\CodingRules. rpt
:\PolySpace\PolySpace_Common'ReportGenerator \templates\Developer.rpt
C:\PalySpace\PolySpace_Common\ReportGenerator \templates \DeveloperReview, rpt
Ci\PalySpace\PolySpace_Common\ReportGenerator \templates \Developer_WithGreenChecks.rpt
C:\PalySpace\PaolySpace_Common'\ReportGenerator \templates \Quality rot

Browse. .. |

—Select Report Format

Qutput folder IC:'PDIySpacE'pulyspacegroject'n;esults'|,-5.LL'|P.-5.554'|,..'n,..'n.Pu:uI}.rSpacE-Du:uc |

Qutput format IF‘DF vI

Run Report | Cancel

Generating Reports of Verification Results

3 In the Select Report Template section, select Developer.rpt.

4 In the Output folder section, select the \polyspace_project\results folder.

5 Select PDF Output format.
6 Click Run Report.

The software creates the specified report. When report generation
completes, the report opens.

4-37

4 Reviewing Verification Results

4-38

Checking MISRA C
Compliance

e “About This Tutorial” on page 5-2
e “Setting Up MISRA C Checking” on page 5-3
¢ “Running a Verification with MISRA C Checking” on page 5-11

5 Checking MISRA C® Compliance

About This Tutorial

In this section...

“Overview” on page 5-2

“Before You Start” on page 5-2

Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.? To check MISRA C compliance, you set an option in your project
and then run a verification. PolySpace software finds the violations during
the compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

In this tutorial, you learn how to:
1 Set an option for checking MISRA C compliance.

2 Select MISRA C rules to check.

3 Run a verification with MISRA C checking.

Before You Start

For this tutorial, you check the MISRA C compliance of the file example.c,
using the project that you created in Chapter 2, “Setting Up a Project File”.

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

Setting Up MISRA C® Checking

Setting Up MISRA C Checking

In this section...

“Opening the Example Project” on page 5-3

“Setting the MISRA C Checking Option” on page 5-4
“Creating a MISRA C Rules File” on page 5-4

“Excluding Files from the MISRA C Checking” on page 5-8
“Configuring Text and XML Editors” on page 5-8

“Saving the Project with a New Name” on page 5-10

Opening the Example Project

For this tutorial, you modify the project in example.cfg to include MISRA
C checking and save the project with a new name.* You use the Launcher
to modify the project.

To open the Launcher:
® Double-click the Launcher icon.
To open example.cfg:

1 Select File > Open project.

The Please select a file dialog box opens.
2 In Look in, navigate to polyspace_project.
3 Select example.cfg.

4 Click Open to open the file and close the dialog box.

4. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

5 Checking MISRA C® Compliance

5-4

Setting the MISRA C Checking Option

You set up MISRA C checking by selecting an option and then selecting the
rules to check. To set the MISRA C checking option:

1 In the analysis options part of the Launcher window, expand the
Compliance with standards option.

2 Select the Check MISRA-C:2004 rules check box.
3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and folders to ignore,
appear.

E--Check MISRA C rules r
----- MISRA C rules configuration ... |-misra2
----- Files and folders to ignore .+ [Hncludes-to-ignore

These options allow you to specify which MISRA C rules to check and
which, if any, files to exclude from the checking.

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking. You
can use an existing file or create a new one. You create a new rules file for
this tutorial by:

® “Opening a New Rules File” on page 5-4
e “Setting All the Rules to Off” on page 5-5
e “Selecting the Rules to Check” on page 5-5

Opening a New Rules File
To open a new rules file:

1 Click the button I—I to the right of the Rules configuration option.

A window for opening or creating a MISRA C rules file appears.

Setting Up MISRA C® Checking

2 Select File > New File.

A table of rules appears. For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

Setting All the Rules to Off

Because this tutorial checks only a few rules, first set the state of all rules to
Off. Later, you select the rules to check.

To set the state of all rules to Off:

1 From the Set the following state to all MISRA rules menu, select Off .
2 Click Go.

Selecting the Rules to Check
To select the rules to check for this tutorial:
1 Expand the set of rules named 16 Functions.

2 Select the Error column for 16.3.

3 Expand the set of rules names 17 Pointers and Arrays.

5 Checking MISRA C® Compliance

4 Select the Warning column for 17.4.

The completed rules table looks like:

5-6

Setting Up MISRA C® Checking

Rules

Errar IWarning Off I

MISEA O rules

I—Numl::ner of rules by mode :

1 134

Ervironnerit

2 Language extenszions

3 Documentation

4 Character setz

Identifiers

Types

I-' Constants

& Declarations and definitions

3 Initialization

0 Arithmetic type conversions

1 Painter type conversions

? Exressions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l E Functions

—16.1 Functionz shall nat be defined with variable numbers of arguments.

—16.2 Functions shall nat call themselves, either directly or indirectly.

—16.3 ldentifiers shall he given for all of the parameters in & function prototy

—16.4 The idertifiers used in the declaration and definition of a function shall

—16.2 Functions wvith ho parameters shall be declared with parameter type

—16.6 The number of arguments passed to a function shall match the numbe

—I16.7 & pointer parameter in a function protatype should be declared as poi

—16.5 Al exit paths from a function with non-void return type shall have an ¢

—16.9 & function identifier shall only be used with either a preceding & or

—1 G610 If & function returns error information, then that error information sha

| | | W] | | 7Y

=T Pointer and arrays

—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs

—17.2 Pointer subtraction shall only be applied to pointers that address elems

—17.3 =, == = == shal not be applied to pointer types except where they po

—17.4 Array indexing shall be the only allowed form of poirter arithmetic.

—17.5 The declaration of objects should contain no more than 2 levels of poi

—17 6 The address of an ohject with automstic storage shall not be azsigne

a'le'le'le'le'le'Baie'lele'le ' ielele'lc ie le

a'le’lc'ie’ie’le' e ie'le'leie'le'le'le le b

CIRG e e e e

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

5-7

5 Checking MISRA C® Compliance

5 Click OK to save the rules and close the window.
The Save as dialog box opens.
6 In File, enter misrac.txt

7 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:
1 Click the button I—I to the right of the Files and folders to ignore option.
2 Click the folder icon.

-

The Select a file or folder to include dialog box appears.
3 Navigate to the folder polyspace project\includes.
4 Select the file math.h.

5 Click OK.

The file math.h appears in the list of files to ignore.

6 Click OK to close the dialog box.

Configuring Text and XML Editors

Before you check MISRA® rules, you should configure your text and XML
editors in the Launcher. Configuring text and XML editors in the Launcher
allows you to view source files and MISRA reports directly from the MISRA-C

log in the Launcher.
To configure your text and . XML editors:

1 Select Edit > Preferences.

5-8

Setting Up MISRA C® Checking

The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

xq

—XML editor configuration

Specify the full path to a XML editor or use the browse button.
XML Editor: IC: \Program Files\MsOffice \Office 12\EXCEL.EXE E‘l

~Text editor configuration
Specify the full path to a text editor or use the browse button.

Text Editor: IC: \Program Files\Windows NT\Accessorieswordpad.exe =

Specify the command line arguments for the text editor,

Arguments: ISFILE

The following macros can be used SFILE, SLIME, SCOLUMM

K Apply Cancel

3 Specify an XML editor to use to view MISRA-C reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

4 Specify a Text editor to use to view source files from the Launcher logs.
For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 Specify command line arguments for the text editor. For example:

$FILE

6 Click OK.

5-9

5 Checking MISRA C® Compliance

Saving the Project with a New Name
You save the project with a new name so that you do not modify example.cfg.
To save the project with the name misra_example.cfg:

1 Select File > Save as new project.
2 In the Save the project as dialog box, navigate to polyspace_project.

3 Enter misra_example for the Session identifier and *cfg for the type.

4 Click OK to close the dialog box.

5-10

Running a Verification with MISRA C® Checking

Running a Verification with MISRA C Checking

In this section...

“Starting the Verification” on page 5-11
“Examining the MISRA C Log” on page 5-12
“Opening MISRA-C Report” on page 5-15

Starting the Verification

When you run a verification with the MISRA C option selected, the verification
checks most of the MISRA C rules during the compile phase.’

Note Some rules address run-time errors.

The verification stops if there is a violation of a rule with state Error.

To start the verification:

1 Click the Start button ﬂl

2 If you see a caution that PolySpace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

The verification fails because of MISRA C violations. A message dialog
box appears.

5. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

5-11

5 Checking MISRA C® Compliance

5-12

x

@ Werification process Failed

3 Click OK.

Examining the MISRA C Log
To examine the MISRA C violations:

1 Click the MISRA-C button in the log area of the Launcher window.

A list of MISRA C violations appear in the log part of the window.

% Compile | Filter I [T Hide justifed violated rules i
2 MISRA C
% Status | Rule File Line | Col | Justified | Acronym | User Acronym | Justification
@ st 1 [16.3 |ndudeh |33 |28
-5
@ Full Log r 17.4 |example.c |37 7
T 174 |example.c |114 (21
¥ |17.4 |example.c [118 |14

2 Click on any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

Running a Verification with MISRA C® Checking

Compile | Filter I [~ Hide justifed violated rules i
21 MISRA C
Status Rule File Line Col Justified Acronym User Acronym
j Stats incude.h 33
23
@ Full Log 17.4 example.c a7 7
_ r 17.4 example.c 114 21
? 17.4 example.c 118 14
Detail

Bule: 1&6.3 (Error): Identifiers shall be given for all of the parameters in a function prototype declaration.
File: C:\PolySpace‘\polyspace_ projectiincludesiinclude.h line 33 (column 28)

Source code

The log reports a violation of rule 16.3. A function prototype declaration in
include.h is missing an identifier.

3 Right click the row containing the violation of rule 16.3 , then select Open
Source File.

!

5 exampl *= Open Source File

+ 17.4 exampl Add Pre-Justification to Clipboard
? 17.4 exampl Open MISRA-C Report

% Configure Editor

The include.h file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 5-8.

5-13

5 Checking MISRA C® Compliance

include.h - WordPad -0 x|

File Edit View Insert Format Help

D= SR s i=@o| B

#ifndef INCLUDE H =
#define INCLUDE H

$define true 1
$define false O

$define checksum 1
#define new mowve O
$define previous move 1

#define MAX SIZE 10

S#% automatically stubbed functionz */

extern volid SEND MESSAGE (int status, const char *message) !
extern int read bus status(void):;

extern int error on bus(void);

extern int read on bus(void):

/# internal function=z #/

void initialise current data(void):;
volid compute new coordonates (void):;
void sort calibration(void):

int polynomia (int inpuat);

int random int (wvold) ;

float random float (void):

extern void partial init(int *new alt);

extern vold RTE (void):

extern volid Exec One Cycle (int); ;I
A

For Help, press F1

4 Correct the MISRA violation and run the verification again.

The verification will complete, and the results will be the same as those
from the tutorial in Chapter 3, “Running a Verification”.

5-14

Running a Verification with MISRA C® Checking

Opening MISRA-C Report
After you check MISRA rules, you can generate an XML report containing all
the errors and warnings reported by the MISRA-C checker.

Note You must configure an XML editor before you can open a MISRA-C
report. See “Configuring Text and XML Editors” on page 5-8.

To view the MISRA-C report:

1 Click the MISRA-C button in the log area of the Launcher window.
A list of MISRA C violations appear in the log part of the window.

2 Right click any row in the log, and select Open MISRA-C Report.

exampl %= Open Source File
17.4 exampl Add Pre-Justification to Clipboard
17.4 exampl Open MISRA-C Report

%4 Configure Editor

The report opens in your XML editor.

5-15

5 Checking MISRA C® Compliance

Cin \d9-© ' = Book2 - Microsoft Excel Table Tools =aERt
S)) i
‘ Home l Insert Page Layout Formulas Data Review View Add-Ins Acrobat Design @ - =7 X
E * Calibri E‘Wrap Text General = ﬁ @ Bt - ﬂ [ﬁ
B I Delete - -
Paste =i Merge & Center Conditional Format — Cell || . sort & Find &
7 EZ 2 Formatting ~ as Table ~ Styles - @Formatv A7 Filter~ Select—
Clipboard ™= Alignment Mumber Styles Cells Editing
Nameld Modeﬂ
16.3 required error C: \PoIvSpaoe\polyspaoeJ)rOJect\mcludes\lnclude h 33 0| Identlflers shall be given for all of the parameters in a function protc
17.4 required warning example.c 97 0 | Array indexing shall be the only allowed form of pointer arithmetic.
17.4 required warning example.c 114 0 | Array indexing shall be the only allowed form of pointer arithmetic.
17.4 required warning example.c 118 0 | Array indexing shall be the only allowed form of pointer arithmetic.

5-16

Using a PolySpace Project
Model File

e “About This Tutorial” on page 6-2
e “Creating a New PolySpace Project Model File” on page 6-3

® “Creating a Configuration File from a PolySpace Project Model File” on
page 6-10

® “Deleting a Generic Target from the Preferences” on page 6-13

6 Using a PolySpace® Project Model File

6-2

About This Tutorial

In this section...

“Overview” on page 6-2

“Before You Start” on page 6-2

Overview

A PolySpace project model file provides a way to save generic targets with
project information. Although you can populate a project with information,
such as source files and project options, from a project model file, you cannot
run a verification with a project model file. You must have a configuration file

to run a verification. In this tutorial, you learn how to:

1 Create a new project model file.

2 Define a generic target and save it in the project model file.
3 Create a configuration file from a project model file.

4 Delete a generic target from the Launcher preferences.
Before You Start

Before you start this tutorial, you must complete Chapter 2, “Setting Up a
Project File”to learn about configuration files and basic Launcher operations.

Creating a New PolySpace® Project Model File

Creating a New PolySpace Project Model File

In this section...

“What Is a PolySpace Project Model File?” on page 6-3
“Creating the PolySpace Project Model File” on page 6-3

What Is a PolySpace Project Model File?

A PolySpace project model file is a project file that includes generic target
processors. A development team uses this file to share project information.
The workflow is:

1 A team leader creates a project model file (. ppm). This file has the analysis
options for the project, including generic targets.

2 The team leader distributes the .ppm file to the team.

3 A developer opens the .ppm file. From this file, PolySpace software
populates the project parameters and the generic targets in the preferences.

4 The developer adds source files, include folders, and a results folder to the
project and saves it as a configuration file (.cfg).

5 The developer launches a verification with the.cfg file.

Creating the PolySpace Project Model File

You use the PolySpace Launcher to create a PolySpace project model file.
Creating a project model file involves:

® “Opening a New Project” on page 6-4

¢ “Examining the Preferences Before Adding the Generic Target” on page 6-4
¢ “Defining the Generic Target” on page 6-5

¢ “Examining the Preferences After Adding the Generic Target” on page 6-7
® “Saving the PolySpace Project Model File” on page 6-8

6 Using a PolySpace® Project Model File

Opening a New Project
To open a new project:

1 Open the PolySpace Launcher by double-clicking the Launcher icon on
your desktop.

2 If the PolySpace Language Selection dialog box appears, select
PolySpace for C/C++ and click OK.

3 Select File > New Project.
4 In the Choose the language dialog box, select C and click OK to close
the dialog box.

Examining the Preferences Before Adding the Generic Target

In this step, you look at the generic targets in the preferences before you add
a generic target. Unless you previously added a generic target, the generic
targets list 1s empty. Later, after you add a generic target, you look at the
generic targets in the preferences again, and see that the generic target that
you added is in the list.

To look at the generic targets in the preferences:

1 Select Edit > Preferences.

The Preferences dialog box appears.

Creating a New PolySpace® Project Model File

x

Menu title Execution cormmand

Ok Apply Cancel

2 Select the Generic targets tab.

Unless you previously added generic targets to your preferences, the
generic targets list is empty.

3 Click Cancel to close the dialog box.

Defining the Generic Target
To define a generic target:

1 In Analysis options, expand Target/Compilation.

2 Click the down arrow to open the Target processor type menu.

6 Using a PolySpace® Project Model File

——P35T Generic-—-

mcpu.. . (Advanced)

3 Select mcpu... (Advanced).

The Generic target options dialog box appears.

6-6

Creating a New PolySpace® Project Model File

x

Enter the target name ||

Default result of signed right shift I.ﬂ.riﬂﬁmetical (Default) ;I

Endianness ILitﬁE endian LI

Bhits 16bits 3Zbits &4bits

Char i« (8 T " |V Signed
Short i v r i)
Int [0 i -
Long [] i+ i)
Long long [y (i {* -
Float]] o i
Doubleflong double] v [
Pointer] f* i i)
Alignment [[o i
Save Cancel

4 In Enter the target name, enter target1.
5 Click Save to save the generic target options and close the dialog box.

Examining the Preferences After Adding the Generic Target

Now when you look at the generic targets in the preferences, you should see
the generic target that you added. To look at the generic targets list in the
preferences:

1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the Generic targets tab.

6 Using a PolySpace® Project Model File

6-8

Notice that target1 appears in the generic targets list:

Preferences

targetl

Edit

Remove |

QK Apply Cancel

3 Click Cancel to close the dialog box.

Saving the PolySpace Project Model File
To save the PolySpace project model file:

1 Select File > Save project.

The Save the project as dialog box appears.
2 Select *.ppm from the Files of type menu.
3 In Session identifier, enter target _example.

4 Click OK to save the file and close the dialog box.

Creating a New PolySpace® Project Model File

Note The generic target that you defined in this tutorial remains in your
preferences until you delete it. Be sure to complete the section “Deleting a
Generic Target from the Preferences” on page 6-13 at the end of this tutorial.

6-9

6 Using a PolySpace® Project Model File

Creating a Configuration File from a PolySpace Project
Model File

In this section...

“Why You Must Have a Configuration File” on page 6-10
“Opening the Project Model File” on page 6-10
“Entering Additional Required Information” on page 6-11

“Saving the Configuration File” on page 6-11

Why You Must Have a Configuration File

In the first part of this tutorial, you created a project model file. To run a
verification, you must have a configuration file. In this part of the tutorial,
you create a configuration file from the project model file that you created
earlier. The workflow 1is:

1 Open the project model file. Opening the project model file populates the:

® Generic targets in the preferences

® Analysis options and other project information

2 Enter additional information, such as the results folder and source files.

Note If you enter the results folder and source files in the project before
you save it as a PolySpace project model file, then that information is saved
in the file and appears in the project when you open the file.

3 Save the configuration file.

Opening the Project Model File

To open the project model file:

1 Select File > Open project.

The Please select a file dialog box appears.

6-10

Creating a Configuration File from a PolySpace® Project Model File

2 Navigate to the polyspace _project folder.
3 In File of type:, select Project Model (*.ppm) files from the menu.
4 Select target_example.ppm and click Open.

A message appears telling you that this project has no source files.

5 Click OK to close the message dialog box.

Entering Additional Required Information
A configuration file must specify the source files and results folder.

To complete the required project information:

* In Results folder, enter the results folder that you created. For the
example in this guide, it is C:\polyspace_project\results.
e Add C:\polyspace project\sources\example.c to the source files.

e Add C:\polyspace project\includes to the include folders.

Note For more information about adding source files and include folders to a
project, see “Creating a New Project to Verify the Example C File” on page 2-9.

Saving the Configuration File

To save the configuration file:
1 Select File > Save project.
The Save the project as dialog box appears.
2 Navigate to the polyspace _project folder.
3 In Session identifier, enter example2.
4 Leave the default type as *.cfg.

5 Click OK to save the project and close the dialog box.

6-11

6 Using a PolySpace® Project Model File

Note Your preferences still include the generic target target1 . Complete
“Deleting a Generic Target from the Preferences” on page 6-13 to delete this
generic target from your preferences.

6-12

Deleting a Generic Target from the Preferences

Deleting a Generic Target from the Preferences

In this section...

“Understanding the Generic Targets Preference” on page 6-13

“Deleting the Generic Target Added in This Tutorial” on page 6-13

Understanding the Generic Targets Preference

The list of generic targets is stored as a PolySpace software preference. You
can add generic targets to the list in one of these ways:

e Edit the preferences using the PolySpace Launcher.

¢ Open a PolySpace project model file that includes generic targets.

The generic targets remain in your preferences until you delete them.
You should delete the generic target that you defined and added to your
preferences earlier in this tutorial.

Deleting the Generic Target Added in This Tutorial

To delete the generic target target1 from your preferences:

1 In Analysis options, expand Target/Compilation.

2 If Target processor type is targetl, change it to sparc (You cannot
delete a generic target if it is the target processor type for the current
project.)

3 Select Edit > Preferences.

The Preferences dialog box appears.

4 Select the Generic targets tab.

5 Select target1 from the list.

6 Click Remove.

7 Click OK to apply the change and close the dialog box.

6-13

6 Using a PolySpace® Project Model File

Note You removed the generic target target1 from your preferences,
but it is still in target_example.ppm. If you save the current project in
target_example.ppm, then target example.ppm will no longer include
targeti.

6-14

A

active project
definition 3-15
setting 3-15
analysis options 2-14
generic targets 6-5
MISRA C compliance 5-4
ANSI compliance 3-5
AQT. See Automatic Orange Tester
assistant mode
criterion 4-28
custom methodology 4-32
methodology 4-28
methodology for C 4-28
overview 4-27
reviewing checks 4-30
selection 4-27
use 4-27 4-30
Automatic Orange Tester
overview 4-34

C

call graph 4-12
call tree view 4-5
calling sequence 4-12
cfg. See configuration file
client 1-5 3-2
installation 1-6
verification on 3-24
coding review progress view 4-54-13
color-coding of verification results 1-2 4-7
compile log
Launcher 3-25
Spooler 3-7
compile phase 3-5
compliance
ANSI 3-5
MISRA C 1-2 5-1
composite filters 4-21

configuration file
definition 2-3

custom methodology
definition 4-32

D

default folder
changing in preferences 2-7
desktop file
definition 2-3
division by zero
example 4-19
downloading
results 3-10
dsk. See desktop file

expert mode
filters 4-21
composite 4-21
individual 4-25
overview 4-10
selection 4-10
use 4-10

F

files
includes 2-11
results 2-11
source 2-11
filters 4-21
alpha 4-21
beta 4-21
custom
modification 4-23
use 4-23
gamma 4-21
individual 4-25

Index-1

Index

user def 4-21

folders

G

includes 2-11
results 2-11
sources 2-11

generic target processors

H

adding 6-4
definition 6-5
deleting 6-13

hardware requirements 3-12
help

accessing 1-10

installation

L

Lau

PolySpace Client for C/C++ 1-6
PolySpace products 1-6
PolySpace Server for C/C++ 1-6

ncher 1-5

monitoring verification progress 3-25

opening 2-5
starting verification on client 3-24
starting verification on server 3-5
stopping 3-26
viewing logs 3-25
window 2-5

overview 2-5

progress bar 3-25

licenses

logs

Index-2

obtaining 1-6

compile
Launcher 3-25
Spooler 3-7
full
Launcher 3-25
Spooler 3-7
stats
Launcher 3-25
Spooler 3-7
viewing
Launcher 3-25
Spooler 3-7

M

methodology for C 4-28
MISRA C compliance 1-2
analysis option 5-4
checking 5-1
file exclusion 5-8
log 5-12
rules file 5-4

P

PolySpace Client for C/C++
installation 1-6
license 1-6

PolySpace In One Click
active project 3-15
overview 3-15
sending files to PolySpace software 3-17
starting verification 3-17
use 3-15

PolySpace products for C
components 1-5
installation 1-6
licenses 1-6
overview 1-2
related products 1-11

Index

user interface 1-5
workflow 1-7
PolySpace project model file
creation 6-3
definition 6-3
overview 6-2
use 6-1
PolySpace Queue Manager Interface. See Spooler
PolySpace Server for C/C++
installation 1-6
license 1-6
ppm. See PolySpace project model file
preferences
Launcher
default folder 2-7
default server mode 3-5
generic targets 6-4
server detection 3-13
Viewer
assistant configuration 4-28
procedural entities view 4-5
reviewed column 4-15
product overview 1-2
progress bar
Launcher window 3-25
project
creation 2-3 2-9
definition 2-3
file types
configuration file 2-3
desktop file 2-3
PolySpace project model file 2-3
folders
includes 2-4
results 2-4
sources 2-4
opening 3-4
saving 2-16
project model file. See PolySpace project model
file

related products 1-11
PolySpace products for linking to
Models 1-11
PolySpace products for verifying Ada
code 1-11
PolySpace products for verifying C++
code 1-11
reports
generation 4-35
results
downloading from server 3-10
folder 2-11
opening 4-4
report generation 4-35
reviewing 4-1
reviewed column 4-15
rte view. See procedural entities view

S

selected check view 4-5

server 1-5 3-2
detection 3-13
information in preferences 3-13
installation 1-6 3-13
verification on 3-5

source code view 4-5

Spooler 1-5
monitoring verification progress 3-7
removing verification from queue 3-10
use 3-7
viewing log 3-7

T

troubleshooting failed verification 3-12

Index-3

Index

U running on server 3-5
starting

from Launcher 3-2 3-5 3-24

from PolySpace In One Click 3-2 3-17
stopping 3-27

unreachable code
example 4-17

v troubleshooting 3-12
variables view 4-5 with MISRA C checking 5-11
verification Viewer 1-5
Ada code 1-11 modes 4-3
C code 1-2 selection 4-3
C++ code 1-11 opening 4-3
client 3-2 window
compile phase 3-5 call tree view 4-5
failed 3-12 coding review progress view 4-5
monitoring progress overview 4-5
Launcher 3-25 procedural entities view 4-5
Spooler 3-7 selected check view 4-5
phases 3-5 source code view 4-5
results variables view 4-5
color-coding 1-2
opening 4-4 W
report generation 4-35
reviewing 4-1 workflow
basic 1-7

running 3-2

running on client 3-24 in this guide 1-8

Index-4

	toc
	Introduction to PolySpace Products for Verifying C Code
	Product Overview
	Ensures Software Reliability
	Decreases Development Time
	Improves the Development Process

	Product Components
	Installing PolySpace Products
	Finding the Installation Instructions
	Obtaining Licenses for PolySpace Client for C/C++ and PolySpace

	Working with PolySpace Software
	Basic Workflow
	The Workflow in This Guide
	Working with PolySpace Project Model Files

	Learning More
	Product Help
	The MathWorks Online

	Related Products
	PolySpace Products for Verifying C++ Code
	PolySpace Products for Verifying Ada Code
	PolySpace Products for Linking to Models

	Setting Up a Project File
	About This Tutorial
	Overview
	Example Files

	Creating a New Project
	What Is a Project?
	Preparing the Project Folders
	Opening the PolySpace Launcher
	Changing the Default Folder
	Creating a New Project to Verify the Example C File
	Opening a New project
	Specifying the Source Files, Include Folders, and Results Folder
	Specifying the Analysis Options
	Saving the Project

	Running a Verification
	About This Tutorial
	Overview
	Before You Start

	Opening the Project
	Using the Launcher to Start a Verification That Runs on a Server
	Starting the Verification
	Monitoring the Progress of the Verification
	Downloading Results from the Server to the Client
	Troubleshooting a Failed Verification
	Hardware Does Not Meet Requirements
	You Did Not Specify the Location of Included Files
	PolySpace Software Cannot Find the Server

	Using PolySpace In One Click to Start a Verification That Runs o
	Overview of PolySpace In One Click
	Setting the Active Project
	Sending the Files to PolySpace Software

	Using the Launcher to Start a Verification That Runs on a Client
	Starting the Verification
	Monitoring the Progress of the Verification
	Completing the Verification and Stopping the Launcher
	Stopping the Verification Before It Completes

	Reviewing Verification Results
	About This Tutorial
	Overview
	Before You Start

	Opening the Viewer and the Verification Results
	Opening the Viewer
	Selecting the Viewer Mode
	Opening the Results

	Exploring the Viewer Window
	Overview
	Reviewing the Procedural Entities View

	Reviewing Results in Expert Mode
	What Is Expert Mode?
	Switching to Expert Mode
	Reviewing Checks in Expert Mode
	Selecting a Check to Review
	Displaying the Calling Sequence
	Tracking Review Progress
	Tracking Reviewed Checks in Procedural Entities View

	Reviewing Additional Examples of Checks
	Example: Unreachable Code
	Example: Arithmetic Error
	Example: A Function with No Errors
	Example: Division by Zero

	Filtering the Types of Checks That You See
	Using Composite Filters
	Using the Custom Filter
	Using Individual Filters

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for C
	Reviewing Checks
	Defining a Custom Methodology

	Automatically Testing Unproven Code
	Generating Reports of Verification Results
	PolySpace Report Generator Overview
	Generating Report for example.c

	Checking MISRA C Compliance
	About This Tutorial
	Overview
	Before You Start

	Setting Up MISRA C Checking
	Opening the Example Project
	Setting the MISRA C Checking Option
	Creating a MISRA C Rules File
	Opening a New Rules File
	Setting All the Rules to Off
	Selecting the Rules to Check

	Excluding Files from the MISRA C Checking
	Configuring Text and XML Editors
	Saving the Project with a New Name

	Running a Verification with MISRA C Checking
	Starting the Verification
	Examining the MISRA C Log
	Opening MISRA-C Report

	Using a PolySpace Project Model File
	About This Tutorial
	Overview
	Before You Start

	Creating a New PolySpace Project Model File
	What Is a PolySpace Project Model File?
	Creating the PolySpace Project Model File
	Opening a New Project
	Examining the Preferences Before Adding the Generic Target
	Defining the Generic Target
	Examining the Preferences After Adding the Generic Target
	Saving the PolySpace Project Model File

	Creating a Configuration File from a PolySpace Project Model Fil
	Why You Must Have a Configuration File
	Opening the Project Model File
	Entering Additional Required Information
	Saving the Configuration File

	Deleting a Generic Target from the Preferences
	Understanding the Generic Targets Preference
	Deleting the Generic Target Added in This Tutorial

	Index

